

Extended Higgs Sector 2HDM+a Models

Christopher Anelli AT AS Behalf of the Extended Higgs Sector Combination

ATLAS Exotics + HDBS Workshop June 13, 2019 University of Victoria

- The **Pseudoscalar Two Higgs Doublet Model** (2HDM+a) is a next generation DM model:
 - Represents the simplest, theoretically consistent extension of a DM simplified pseudoscalar model.
 - Contains a rich parameter space and novel detection signatures.
- Phenomenological studies of the model as well as recommendations for 2HDM+a parameter scans are documented in the DMWG White Paper.
- The recent DM Summary <u>paper</u> reinterpreted previous DM searches to present the first set of collider limits for this model.
- Looking forward the Extended Higgs Sector Combination looks to utilize the full Run 2 data, explore new channels, and perform statistical combinations.

Evolution of Dark Matter Models

Operators in the Lagrangian made from DM and SM fields

EFTs have energy scale, Λ. Only valid for momentum transfers well below Λ. Introduces spin-0 or spin-1 mediators

Describes DM production kinematics with a minimal number of free parameters

Not a complete theory

I.e. Super Symmetry or 2HDM+a

> Gauge Invariant, Renormalizable

Larger number of free parameters leading to rich phenomenology

2HDM+a Model

$$\mathcal{L}_{\chi} = -iy_{\chi}P\bar{\chi}\gamma_5\chi$$

$$V_P = \frac{1}{2}m_P^2 P^2 + P\left(ib_P H_1^{\dagger} H_2 + \text{h.c.}\right) + P^2\left(\lambda_{P1} H_1^{\dagger} H_1 + \lambda_{P2} H_2^{\dagger} H_2\right)$$

Alignment Limit

Christopher Ryan Anelli

- Work in the alignment limit, $\cos(\beta \alpha) = 0$.
- Light scalar, h, associated with SM Higgs, 125 GeV.

• Electroweak VEV,
$$v = \sqrt{v_1^2 + v_2^2} = 246 \text{ GeV}$$
.

• Heavy scalar, H, does not couple to vector bosons pairs. $\cos(\beta - \alpha)$

*For CP symmetric 2HDM, A also has no tree-level coupling to ZZ or WW.

- Higgs fit
10
5
1
0.5
-1.0 -0.5 0.0 0.5 1.0

$$\cos(\beta - \alpha)$$

 $\tan\beta$

type–II 2HDM

4

2HDM+a Parameters

2HDM+a model has 14 parameters:

$$\left\{\begin{array}{c}v, M_h, M_A, M_H, M_{H^{\pm}}, M_a, m_{\chi}\\\cos(\beta - \alpha), \tan\beta, \sin\theta,\\y_{\chi}, \lambda_3, \lambda_{P1}, \lambda_{P2}\end{array}\right\}$$

- Alignment limit fixes v, M_h , and $\cos(\beta \alpha)$ values.
- Vacuum stability and unitarity constrain quartic couplings, λ_{3} , λ_{1p} , $\lambda_{2p} = 3$.
- Choose DM coupling, $y_x = 1$.
- EW precision measurements constrain mass splitting. Set M_A=M_H=M_{H±..}

Reduces to 5 free parameters:

Free Parameters

 $M_A=M_H=M_{H\pm}$: mass of heavy pseudoscalar A, heavy scalar H, and charged scalar, H[±].

 M_a : mass of pseudoscalar mediator ($M_a < M_A$)

sinθ: mixing angle between a and A, both couple to DM.

tanβ: ratio of VEVs of Higgs doublets

M_x: DM mass

Higgs Decay

For light mediator masses, M_a, SM Higgs measuren effectively probe the 2HDM+a model.

h->aa (even in alignment limit). Most restrictive wh considering one of the a's <u>off-shell</u>.

Invisible Higgs Decay

- For M_a < 125 GeV Higgs can decay to DM:
 h → a_{XX} →_{XX} _{XX}.
- Reinterpret limits on Invisible Higgs BF. Current constraints from Run 1 (23%), but new Invisible Higgs combination planned for Run2.

Visible / Mixed Higgs Decay

 For large tanβ, or when M_X is too large to allow h->axx, there can also be h → abb decays, leading to bb xx or 4b final states.

Analyses

M_A-M_a Scan

Benchmark Parameter scans chosen to highlight properties of the model and complementarity of signatures.

- M_A-M_a scan highlights impact of the Jacobian peak.
- a->tt decay, reduces sensitivity for M_a > 350 GeV.
- H(inv) sets hard lower bound on m_{a.}
- Introduce new signatures: Wt + MET, H(ττ)+MET, tt+MET.
- Perform statistical combinations on channels of *comparable* reach

 $\sin\theta = 0.35$, $\tan\beta = 1.0$, $M_{\chi} = 10$ GeV

Christopher Ryan Anelli

lune 13 2019

tanß Scan

- Highlight sensitivity to high \bullet tan β and low tan β for top and bquark signatures, respectively.
- New signatures: lacksquarebb, bbbb, tt, Wt + MET.
- Include contributions from bb-۲ induced production for Mono-H and Mono-Z channels.
- New benchmark with higher value of $sin\theta^1$

¹ Larger value of sin θ corresponds to tighter constraint on M_H M_{H±} splitting, and vacuum instability for O(M_A=1TeV).

E^(†**) E

• Two 1D scans are chosen to highlight how sinθ dependence differs whether a is above or below the tt threshold.

• $h + E_T^{miss}$, has complicated sin θ behavior. Resonance and non-resonance Feynman diagrams have different sin θ dependence, altering E_T^{miss} shape.

DM mass Scan

Limits on M_x are compared to relic density calculations made with MadDM.

 $sin\theta$ = 0.35, $tan\beta$ = 1.0 , $M_A\text{=}$ 600 GeV, M_a = 250 GeV

• For $M_X < M_a/2$ (< M_t) model is largely independent of $M_{X.}$

- Sensitivity falls off sharply for off-shell M_X.
- Relic density is depleted by resonant enhancement $\chi\chi$ -> a/A->SM for $m_{\chi} = 1/2^* m_{a/A}$
- For m_x > m_t annihilation to fermions becomes favored leading to an under-abundance of DM.

CAP Congress 2019

DM mass Scan

For future benchmark, consider 2D scan of Ma: Mx:

- Relic density plateau for $M\chi = M_{top}$.
- Highlight regions of correct, relic density only explorable by non-MET searches, ie 4-top.
- Invisible Higgs dependence on Mχ.
- Minimal additional points required, since for, Mχ < Ma/2, DM mass has negligible impact on cross section or kinematics.

- Cross Section decreases with increasing t
- Is flat as a function of M_{χ} , but drops steeply
- sin(θ) dependence is interesting. For Ma branching fraction of H→aZ and is strictly mediator to tt becomes accessible (increa)

Fi ch

be

- 2HDM+a introduces a new, theoretically consistent, model of DM.
- Model has 5 free parameters, use 1D and 2D Benchmark scans to highlight features of the parameter space.
- First limits have been made reinterpreting 2015+2016 searches.
- Introducing new channels, in particular Wt + E_T^{miss} and visible final states.
- Expect improved sensitivity from full Run 2 dataset, optimized searches, and statistical combination.